

	
[bookmark: _Hlk117416929]3GPP TSG-SA5 Meeting #147 	S5-232701
Athens, Greece, 27th February - 3rd March 2023

Source:	Ericsson	
Title:	Add definitions and terms
Document for:	Approval
Agenda Item:	6.7.5.1
1	Decision/action requested
The group is asked to discuss and approve the proposal
2	References
[1]	3GPP TR 28.908: “Study on Artificial Intelligence / Machine Learning (AI/ML) management”.
3	Rationale
DP AI/ML management terminologies and definitions (S5-225205) was endoreced in SA5#145 proposed removing of prefix AI in front of terms. However there still are a mixed usage of AIML or ML only in the document. The data types introduced in the document are not always written with right font.

4 Detailed proposal

First change
[bookmark: _Toc120096666][bookmark: _Toc120097026][bookmark: _Toc120528473]5.1.4.2	Potential solutions for monitoring and control of AI/ML behavior
To allow for monitoring and control of AI/ML behavior :
- 	The contexts and actions of the AI/ML MnS producerprovider are grouped into operational modes represented by abstract states that are understood by both the AI/ML MnS producerprovider and the AI/ML MnS Consumer.
> 	For example, the Robocar may be considered to have a few (e.g. two) abstract states
>>	normal operations, where the Robocar may be simply given a destination and let to act as it wishes
>>	extraneous circumstances, which represents unusual conditions such an accident on the road (as learned from the radio), abnormal street conditions such an unusually wet street due to pipe splashing water onto the street or a street power line bent into the road. In such cases the operator actions may be different , e.g. to ask the car to make a sudden stop or sudden turn.
> 	The expected number of abstract states depends on use case but is in general a small number. So, the maximum number of abstract states may be set to a small value but large enough to support most use cases (e.g. a set of states numbered 0-16 or 0-63).

- 	Each ML entity or AI/ML inference function should have an object say called abstract behavior that contains characteristics of the abstract behavior of the ML entity or AI/ML inference function. The abstract behavior may be an IOC names say, abstractBehavior and name contained on the ML entity or AI/ML inference function. The abstract behavior contains 2 attributes- the candidate abstract states and the applied abstract states.
- 	A list of candidate abstract states and their candidate actions and a list of the selected and configured abstract states and their respective selected actions.
- 	Introduce a datatype for the candidate abstract state, say called candidateAbstractState.
> 	Introduce candidateAbstractStates as an attribute of the abstract behavior. The candidateAbstractState is a list of abstract states and where each state has a list of candidate abstract actions for that abstract state.
> 	Each candidateAbstractState may have a string identifier of the abstract state, a human readable description and a list of possible actions that may be selected for that state. As such there should be an attribute for possible actions, say called possibleActions that holds the possible actions for that state. The possibleActions attribute may be an enumeration of the actions from which the MnS consumer may chose those to be applied.

- 	Introduce a datatype for the applied abstract states, say called appliedAbstractStates.
> 	The appliedAbstractStates is a list of state-action tuples. Each state may be represented by an identifier for the respective state as listed in the candidateAbstractStates. Similarly, each action may be represented by an identifier for the respective action as listed in the possibleActions of the respective candidateAbstractState.

First change
[bookmark: _Toc120096668][bookmark: _Toc120097028][bookmark: _Toc120528475][bookmark: _Toc120097098][bookmark: _Toc120096739][bookmark: _Toc120528545][bookmark: _Toc107830575][bookmark: _Toc120096802][bookmark: _Toc120097162][bookmark: _Toc120528609]5.1.4.4	Potential solutions for AI/ML performance abstraction
Introduce an IOC for AI/ML performance abstraction as the entity that is the producer of AI/ML performance abstraction and supports all the related services for request and delivery of qualified ML performance Abstraction. The IOC may be named MLPerformanceAbstraction.
MLPerformanceAbstraction may be name-contained in either a Subnetwork, a ManagedFunction or a ManagementFunction.
-	The MLPerformanceAbstraction receives a request for the qualification and abstraction of one or more ML Performance metric(s) of a specific ML eEntity.
The request might be an IOC and may be named MLPerfQualRequest.
-	The request may contain the raw metrics (Confusion Matrix, Precision and Recall, F1-score, AU-ROC, …) or the input(s) and the expected output(s) of the stated ML entity for which performance abstraction is desired.
-	For each request, the MLPerformanceAbstraction provides a response that contains the report on the qualified abstract performance. The report might be named MLAbstractPerfReport.
Abstraction of ML Performance
An IOC is introduced to support ML performance abstraction. It might be named mlPerformanceIndex. The mlPerformanceIndex has a pre-defined index range that specifies the absolute minimum and maximum performance. It is introduced as an attribute to the mlPerformanceIndex and might be named mlPerformanceIndexRange.
-	The mlPerformanceIndexRange is standardized and known by both the consumers and the producers of AI/ML services and may be applied for different performance metrics.
-	For each performance metric, the performance abstraction producer should map the specific performance value to the predefined mlPerformanceIndexRange to generate the specific mlAbstractPerfIndex value for that performance metric value. This can then be communicated to the consumers, who do not need to know the original performance metric value or its interpretation but can still make sense of the achieved performance.
-	The mlPerformanceIndex may be computed based on only one performance metric. However, an aggregate index may also be computed for a combination of multiple performance metrics, to generate the specific mlAggregatePerfIndex value.
Requesting and Reporting on ML Performance Abstraction
The MLPerformanceAbstraction has the capability to compute an abstraction of the performance of a given ML eEntity given the achieved performance of the ML eEntity on the specific metrics. A mlPerformanceIndexRange is configured onto the MLPerformanceAbstraction to indicate the fixed range on which all performances are to be mapped.
>	For each request to abstract and qualify the performance of the a given ML eEntity, an MnS consumer creates a new request, might be named MLPerfQualRequest, on the MLPerformanceAbstraction, i.e., MLPerfQualRequest should be an IOC that is instantiated for each request to abstract and qualify performance.
>	Any request for qualifying and abstracting performance state the following:
>>	mLFunctionID: the identifier of the specific AI/ML inference function the MnS consumer wishes to have performance qualified and abstracted. In some cases, the request may be submitted by the network function having ML capabilities itself, in such a case the network function submits its own DN.
>>	mLEntityIdMLEntityID: The request may optionally state the identifier of the specific ML Eentity for which the MnS consumer wishes to have performance qualified and abstracted.
>>	mlPerformanceMetrics: The request indicates the specific one or more ML-related performance metrics and their values that should be evaluated by the MLPerformanceAbstraction for generating the abstract performance index.
>	Following the request, the MLPerformanceAbstraction computes the mlPerformanceIndex as the abstraction of the performance metric values as fitted to the specified mlPerformanceIndexRange.
For the computed mlPerformanceIndex, the MLPerformanceAbstraction compiles report containing the computed mlPerformanceIndex. Then it forwards it to the MnS consumer (the function that requested for the performance abstraction) to notify the MnS consumer about the outcomes of the performance abstraction. Subsequent to reporting the MLPerformanceAbstraction may also publish the abstract performance to some shared publication space. The report is a data type and might be named MLAbstractPerfReport.
[bookmark: _Toc120096669][bookmark: _Toc120097029][bookmark: _Toc120528476]5.1.4.5	Potential solutions for ML entity performance indicators query and selection
This solution extends the ModelPerformance data type to specify which ML performance indicators can be supported by ML eEntity or its hosting function (e.g., MLTrainingFunction or MLInferenceFunction). The same data type can be used to activate the notification on specific ML performance indicators based on the request by the authorized MnS consumer.
[bookmark: _Hlk116898592][bookmark: MCCQCTEMPBM_00000118]- SupportedMlPerformance <<dataType>>
This data type specifies the performance indicator which can be supported by an ML entity or a function (e.g., MLTrainingFunction or MLInferenceFunction). It contains the tuples of supportedPerformanceMetric and activatedPerformanceMetric attributes. The supportedPerformanceMetric indicates performance metric which AIML entity or a function is capable of providing e.g., accuracy/precision/recall/F1-score/MSE/MAE. The authorized MnS consumer should be notified only on a specific subset of such performance metrics for which the activatedPerformanceMetric indicator is set.
- Attributes
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	supportedPerformanceMetric
	M
	T
	F
	F
	T

	activatedPerformanceMetric
	M
	T
	F
	F
	T

- Attribute definitions
	Attribute Name
	Documentation and Allowed Values
	Properties

	SupportedPerformanceMetric
	It indicates the performance metric which AIML entity or a function is capable of providing e.g. "accuracy", "precision", "F1 score", etc.

allowedValues: N/A.
	Type: String
multiplicity: 1
isOrdered: N/A
isUnique: True
defaultValue: None
isNullable: False

	ActivatedPerformanceMetric
	It indicates whether the ML MnS consumer activated the notifications on specific performance metric.
Setting this attribute to "TRUE" the SupportedPerformanceMetric will be notified to the consumer.
	Type: Boolean
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A
defaultValue: FALSE
isNullable: False

Next change
[bookmark: _Toc120096711][bookmark: _Toc120097070][bookmark: _Toc120528517]5.6.5	Evaluation
The solution described in clause 5.6.4 adopts the NRM-based approach, proposing three new information object classes with clear association relationship internally and with existing information element “MLEntity”. It fully reuses the existing provisioning MnS Operations and notifications for control of Inference History Request and reporting. The implementation of this NRM-based solution is straightforward.
Therefore, the solution described in clause 5.6.4 is a feasible solution for AI/ML Inference History.
Next change
[bookmark: _Toc120096720][bookmark: _Toc120097079][bookmark: _Toc120528526]5.7.4.1	MLContext <<datatype>> on MLEntity
The IOC MLContext is a <<datatype >> attribute on the MLEntityMLEntity. The MLContext is notifiable, so that any interested party can subscribe to a notification on the MLContext.
Wwhen there is a change in the MLContext, e.g. as observed from the statistical properties of data, the notification is sent to the entity that subscribed to the notification.
The MLContext has the following attributes which can be configured by the MnS consumer when defining an MLContext to be monitored.
-	Attribute “area of interest” identifying a scope e.g., the geographical area to be taken into account.
-	Attribute "area granularity" defining the size of the sub-areas of the area of interest for which the statistical properties of data should be identified. It can be expressed for example in km or as a description of a relevant part of the network (e.g., building, street, block, district, city, or state). In case area granularity attribute is not specified by the MnS consumer, contexts related to different areas are determined according to the data distribution detected in the area of interest.
-	Attribute " reporting_threshold " indicating when the deviation in data statistics compared to previously determined context needs to be reported. It can be numeric attribute, e.g., indicating the percentage of changes between the currently monitored data statistics and previously identified data statistics.
The notification delivers the MLContextReport that contains the information on partitioning of area of interest into smaller areas (i.e. sub-areas) based on statistical properties of data. The report may also comprise the statistical properties of identified sub-areas. Furthermore, the report may include the information on detected changes in data statistics. Hereby, either the complete information on current data statistics or the actual “delta” compared to previous data statistics may be indicated to the MnS consumer.
[bookmark: MCCQCTEMPBM_00000043][bookmark: MCCQCTEMPBM_00000044]The MLContextReport MOI is contained by the MLTrainingFunction or MLInferenceFunction MOI.
[bookmark: _Toc120096721][bookmark: _Toc120097080][bookmark: _Toc120528527]5.7.4.2	Mobility of MLContextMLContext
To support Mobility of MLContext, extend MLContext (TS 28.105 [4], clause 7.4.3) with additional parameters monitoringScope, validityScope and preparedScope. The monitoringScope is where the data used for training and inference is collected, the validityScope is the network scopes in which the function makes decisions while the preparedScope is the network scopes in which the function is prepared to be ready for inference.
Table 5.7.4.2-1: Extended attributes for MLContext
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	monitoringScope
	?
	T
	T
	?
	?

	validityScope
	?
	T
	T
	?
	?

	preparedScope
	?
	T
	T
	?
	?

Next change
[bookmark: _Toc120096722][bookmark: _Toc120097081][bookmark: _Toc120528528]5.7.5	Evaluation
The solution described in clause 5.7.4.1 is consistent with the MLEntityMLEntity <<IOC>> and enhances the existing information element MLContext with three attributes, which are to configure & monitor three types of context. It is a fully NRM-based approach, andapproach and reuses the existing provisioning MnS operations and notifications for context configuration and monitoring. It introduces the MLContextReportMLContextReport information class to enable a versatile solution for deliveries of context notifications. It provides the means to facilitate both capturing the information on the context of the MLEntityMLEntity, as well enabling the notifications on the context change using the consistent NRM-based approach. Therefore, the solution described in clause 5.7.4.1 is a feasible solution for ML context.
The solution described in clause 5.7.4.2 enhances the MLContext datatype with attributes that characterize the scope of the MLEntityML entity. This enables the network or management functions to read the scope and determine the respective scope for which the ML entity supports. It also enables the consumers to configure the scopes differently even where the MLEntityML entity changes contexts. Therefore, the solution described in clause 5.7.4.2 is a feasible solution for Mobility of MLContextML context.
Next change
[bookmark: _Toc120096728][bookmark: _Toc120097087][bookmark: _Toc120528534][bookmark: _Toc120096726][bookmark: _Toc120097085][bookmark: _Toc120528532][bookmark: _Toc120096737][bookmark: _Toc120097096][bookmark: _Toc120528543]5.8.3	Potential requirements
REQ-ML_CAP-1 The 3GPP Management system should have a capability for an authorized MnS consumer to request the AI/ML MnS Producer for the capabilities of existing ML entities available within the producerprovider of AI/ML inference.
REQ-ML_CAP-2 The AI/ML MnS Producer should have a capability to report to an authorized MnS consumer the capabilities of an ML entity as a decision described as a triplet <object(s), parameters, metrics> with the entries respectively indicating: the object or object types for which the ML entity can undertake optimization or control; the configuration parameters on the stated object or object types, which the ML entity optimizes or controls to achieve the desired outcomes; and the network metrics which the ML entity optimizes through its actions.
REQ-ML_CAP-3 The AI/ML MnS Producer should have a capability to report to an authorized MnS consumer the capabilities of an ML entity as an analysis described as a tuple <object(s), characteristics> with the entries respectively indicating: the object or object types for which the ML entity can undertake analysis; and the network characteristics (related to the stated object or object types) for which the ML entity produces analysis.
REQ-ML_CAP-4 The 3GPP Management system should have a capability to enable an authorized MnS consumer to request an AI/ML MnS Producer for a mapping of the consumer's targets to the capabilities of one or more ML entities.

Next change
5.8.2.1	Identifying capabilities of ML entities
Network functions, especially network automation functions, may need to rely on AI/ML capabilities that are not internal to those network functions to accomplish the desired automation. For example, as stated in TS 28.104 [2], “an MDA Function may optionally be deployed as one or more AI/ML inference function(s) in which the relevant models are used for inference per the corresponding MDA capability.” Similarly, owing to the differences in the kinds and complexity of intents that need to be fulfilled, an intent fulfilment solution may need to employ the capabilities of existing AI/ML to fulfil the intents. In any such case, management services are required to identify the capabilities of those existing ML entities.

Figure 5.8.2.1-1: Request and reporting on AI/ML capabilities
Figure 5.8.2.1-1 shows that the consumer may wish to obtain information about AI/ML capabilities to determine how to use them for the consumer's needs, e.g., for its fullfillment of intent targets or other automation targets.

Next change

5.9.4.1	Possible solution#1
Following is the proposed solution based on information model defined in TS 28.105 [2].
-	Extend the MLEntity <<dataType>> with an attribute "updatedTime", which indicates the time that the ML entity is updated. For a trained ML entity, the value of "mLEntityVersion" indicates the version number of the ML entity. When the ML entities updating is initiated and successfully executed, the value of "mLEntityVersion" is modified to be the new version number, and the value of "updatedTime" is the time that the updating is finished. Then AI/ML MnS producer can use the "notifyMOIAttributeValueChange" operation to inform the authorized MnS consumer about the AIML update Status including the updated MLEntitymLEntity version number and the corresponding updating time.
Next change
[bookmark: _Toc120096740][bookmark: _Toc120097099][bookmark: _Toc120528546]5.10.1	Description
The AI/ML inference function (e.g., NG-RAN intelligence ES function as described in TR 37.817 [15]) may use the ML entity for inference.
The AI/ML inference function needs to be configured (e.g., with policies, target, conditions where applicable) in order to conduct inference in the 5G system aligning with operator's the consumer´s expectation.
To enable the AI/ML inference function to perform inference using the preferred ML entity, the relevant ML entity needs to be able to be activated and deactivated.
As described in clause 4.7 in TR 28.813 [3], RAN domain ES can use AI to formulate energy saving solutions. Therefore, the ML entities which enabled RAN domain ES function should be controlled by 3GPP management system. The ML entity configuration needs to be triggered to enable RAN domain ES function.
The AI/ML configuration can be initiated by the MnS consumer or initiated by the MnS producer.
The following aspects are described for AI/ML configuration:
- 	Configuration for AI/ML inference function,
-	Configuration for AI/ML entity for RAN domain ES function,
-	Activation for AI/ML inference capabilities on ML entities and inference functions.
Next change
[bookmark: _Toc120096756][bookmark: _Toc120097115][bookmark: _Toc120528562]5.10.4.3.4	Schedule based activation and deactivation
The generic framework described in clause 5.10.4.3.1 is extended with the following attributes to support the schedule-based activation and deactivation:
- 	AI/ML inference capabilities to be activated/deactivation on the ML entity or inference function based on the given schedule.
-	The schedule for activation/deactivation.

[bookmark: _Toc120097116]-	
[bookmark: _Toc120528563]The schedule for activation/deactivation.5.10.4.3.5	Gradual activation and deactivation
This solution extends the general framework for activation to support gradual/partial/progressive activation.
Multiple options may be considered for the solutions:
1) 	Using Activation attributes on the NRM
Introduce a <<datatypedatatype >> attribute for partial activation (say called "partialActivation") in the MLEntityMLEntity or its function. This can have two <<datatypedatatype >> attributes - an "activationScope and an "activationLevel".
The activationScope specifies the information on particular network scope and AI/ML capabilities to be activated. It is configured by the MnS consumer to limit the activation of selected AI/ML capabilities to the desired extent. The scope may include:
> 	information on the network context, e.g., specific RATs and the object(s) or object types for which the AI/ML capability is applicable,
> 	information on the subscope of the applicable expectedRuntimeContext which may include at least one or combination of the following:
>> 	object subscope – identifying a subset of the objects with respect to which a certain AI/ML capability should be activated
>> 	network characteristics (related to the stated object or object types) for which the MLEntityMLEntity produces analytics
>> 	control parameter sub scope - identifying a subset of the parameters of the stated object or object types which the MLEntityMLEntity optimizes or controls and for which ten a certain AI/ML capability should be activated
>> 	metric sub scope - identifying a subset of the network metrics which the MLEntityMLEntity optimizes through its actions for which then a certain AI/ML capability should be activated
The activationScope is explicitly stated by the MnS consumer for the desired scope and subscope.
Following the activation, a notification may be provided, e.g., via a MLGradualActivationResponse <<>>datatype>> that represents the response upon partial or gradual activation of MLEntityML entity. This IOC is created by the MnS producer and reported to the MnS consumer, and it contains the following attributes:
- 	MLEntityMLEntity ID - identifier of the ML entity to which the gradual activation applies;
- 	Status, e.g. activated/deactivated;
- 	Information on particular AI/ML capabilities that have been activated;
- 	Scope under which particular AI/ML capabilities have been activated.
2) 	Using abstractActivtion levels on the NRM
Introduce a data type on the MnS producer that exposes the abstract ctivation levels supported by the MnS producer. These may be contained in a datatype called SupportedMLActivationLevels which is a list of candidate levels. Each entry in the list is of <<datatype datatype>> 	MLActivationLevel - a << datatypedatatype >> representing an individual step in which the activation (or de-activation) can be performed at the MnS Producer.
The MLActivationLevel contains the following attributes:
- 	Identifier of the abstracted activation level, e.g, low, medium, high;
- 	Information on (the set of) AI/ML capabilities to be activated (or de-activated) for a given abstracted activation level;
- 	Information on the scope under which the given AI/ML capabilities will be activated (or de-activated) for a given abstracted activation level.
Introduce an attribute for a selected activation level. This may be termed as SelectedActivationLevel - this is an enumeration of the Identifiers of the abstracted activation level which can be configured by the MnS consumer to select the preferred activation level.
Next change
[bookmark: _Toc120096759][bookmark: _Toc120097119][bookmark: _Toc120528566]5.11.1	Description
A network automation system may involve or apply multiple AI/ML inference functions and/or ML entities each of which only has a limited view of the network scope. For their effective operation, it may be necessary to apply orchestration mechanisms (be it centralized or otherwise) to orchestrate both the operation of the AI/ML inference functions as well as the execution of the actions recommended by the AI/ML inference functions.
Note: 	The AI/ML inference function is of any function that employs the capabilities of a trained mathematical ML entity (the ML model) or Decision Matrix to make inferences for a specific use case. Such a function may for example optimize load distribution among cells, detect anomalies from data or evaluate the likelihood interference among a set of cells.
Next change
[bookmark: _Toc120096761][bookmark: _Toc120097121][bookmark: _Toc120528568]5.11.2.1	Knowledge sharing on executed actions
The actions and effects of employing and applying AI/ML inference cannot be known beforehand since they are based on the learnings of the AI/ML entities. An AI/ML inference function may be to optimize one set of parameters but its actions may impact another function. In that case mechanisms are needed to counteract conflicts and or minimize potential negative impacts resulting from conflicting actions brought up by applying AI/ML inference.
When an ML entity A executes an action on the network, that action may affect other network functions. Most critical is that those actions may affect the learning environment (i.e., the training data) of another ML entity, say ML entity B. Correspondingly, the ML entity B needs to be informed when such actions are taken by any ML entity A.
Next change
[bookmark: _Toc120096767][bookmark: _Toc120097127][bookmark: _Toc120528574]5.11.4	Possible solutions
A single solution may be provided to support the different requirements in clause 5.11.3 as follows:
Information elements:
- 	Introduce an <<IOC>> for centralized Orchestration of AI/ML inference functions. The <<IOC>> which may be named AIMLOrchestration, would function as the centralized Automation Controller that takes responsibility for the end-to-end performance of the complete set of network functions that apply AI/ML capabilities.
- 	Introduce an <<IOC>> for a function that contains AI/ML to be used for network automation. This may be called an AI/ML inference function AI/ML inference function or network automation function since it is likely to have similar features with or without AI/ML. This <<IOC>> may be named as a NetworkAutomationFunction <<IOC>>.
- 	Introduce an <<IOC>> for a Network Automation Capability Library as an attribute of the AIMLOrchestration. The <<IOC>> which may be named a CapabilityLibrary, stores the capabilities of the AI/ML inference functions or ML entities that the AIMLOrchestration needs to orchestrate. The AIMLOrchestration uses a Network Automation Capability Library as a database in which it registers the capabilities of the different network automation functions available, i.e., when an AI/ML inference function or ML entity is added to the system, its capabilities or the problems it can solve as well as the KPIs it optimizes are registered with the CapabilityLibrary The AIMLOrchestration may populate the CapabilityLibrary by querying the individual AI/ML inference functions or ML entities for their capabilities.
- 	Introduce a <<dataTypedataType>> for the network performance Targets. Through the network performance Targets, the AIMLOrchestration receives the technical objectives that are expected to be achieved. These are set either by the human operator or by a network automation function (as shown in Figure 5.11.2.2-1) responsible for deriving concrete objectives from the operators desired goals. Such an objectives-setting function is here referred to as the Network Objectives Manager. The AIMLOrchestration monitors the NAFs to ensure that all are contributing towards achieving the objectives and not towards impeding objective achievement.
- 	Introduce a <<dataType>> <<datatype>> on the AIMLOrchestration for the Network state. The datatype which may be called the NetworkState indicates, and labels specific unique states of the network as derived from specific combinations of raw network data. The state may be derived from an external ML entity that shares that state with all interested entities or it may be derived by the AIMLOrchestration. The Network state aids the AIMLOrchestration not only to relate states observed in different time periods but to also reference states in a way that is understandable to other entities, e.g., while communicating to the AI/ML inference functions or ML entities.
- 	Introduce a <<datatype>> on the AIMLOrchestration for a recommended action from a network automation function. The datatype which may be called the recommendedAction<<datatype>> captures the recommended policy and configuration change of a specific network automation function, e.g., an AI/ML inference function or ML entity towards the AIMLOrchestration. - All recommendations for policy changes as computed by the network automation functions for their respective objectives are communicated via this recommendedAction. Such a recommendedAction may be a hash function of parameter to parameter-value annotated with an indication of the time within which the change should be activated or otherwise discarded.
- 	The recommendedAction <<datatype>> may also include a field for the eventual action that is selected by the AIMLOrchestration, say called the selectedAction. This is written by the AIMLOrchestration with the specific values that have been applied by the AIMLOrchestration following which a notification may be sent to the network automation function that generated the recommendedAction. The selectedAction may also be used by the AIMLOrchestration to inform the network automation functions if the recommended policy change has been activated or not and possibly the reason thereof. The respective message sent to a network automation function may for example be verbalized as follows:
-	“In network state A1, when you changed policy X from configuration X1 to X2, the observed effect on the network KPI vector v exceeded a predefined threshold. Consequently, policy configuration X2 is now barred from your applicable control and operational parameter spaces.”
NOTE 1: 	the AIMLOrchestration is also tasked with reconfigurations of the control and operational parameter spaces of the network automation functions to adjust the limits within which the network automation functions may operate. For example, for a load balancing function, the AIMLOrchestration may adjust the limits to which the load balancing function may adjust the cell individual offset (CIO) by setting the maximum or minimum CIO or steps within which the CIO may be changed. For these reconfigurations, the AIMLOrchestration may use existing NRMs for the network automation functions, e.g., the MLEntity NRM, to change the attributes of the network automation functions. For example, the AIMLOrchestration may mask a part of the control and operational parameter spaces such that those masked values become inaccessible for the network automation function. It may also use the existing NRMs to activate or deactivate particular network automation functions as may be necessary (e.g., based on network context).
NOTE 2: 	The AIMLOrchestration may be the only responsible entity for activating the selected inference decisions onto the network. For this, the AIMLOrchestration may activate the successful recommended policies and/or configurations on the network via the existing NRMs for the network objects or existing CM capabilities.
- 	Introduce an <<IOC>> on the network automation function, e.g., on the AI/ML inference function or on the ML entity for a request for monitoring. The IOC which may called metricMonitoringRequest, may be used by the AIMLOrchestration or by any network automation function A to request another network automation function B to start a monitoring of the metrics of the of network automation function B and subsequently report the outcomes of the monitoring.
- 	Introduce a <<datatype>> datatype on the AIMLOrchestration for an indication of the observed effect of a given action on the metrics of given network automation function. The IOC which may be called the Action Quality Indicator, provides information to the source network automation function (i.e., the function that generated the action) about how good or bad that action was to the metrics of the reporting function.
Usage of the information Elements:
1) 	To Identify and trigger Automation capabilities, e.g., AI/ML inference functions or ML entities:
- 	The AIMLOrchestration or a multi-functional analytics service of the AIMLOrchestration evaluates the network state to diagnose what the network or network resource problem might be. In general, such a problem cannot be concluded from a single KPI, otherwise, the NAF responsible for that KPI should be triggered by default. Instead, it is typically a rare event which can only be determined from multiple KPIs. For identifying the problem, the AIMLOrchestration may collect data on KPIs. Counters, CM values etc. The combination of KPIs. Counters, CM values, etc may be correlated e.g., using an analytics service to identify the problem and the specific combination may be labelled as a specific network state.
NOTE 3: 	The problem may also be pointed to using analytics service such as MDAS.
- 	For the identified problem, the AIMLOrchestration finds the most appropriate network automation function to trigger. It could also be the case that there are multiple network automation functions responsible for a given KPI, which could say happen if there is an open network automation platform to which multiple vendors have supplied network automation functions. In such a case, the network automation function to be triggered by default is not obvious and either the AIMLOrchestration or an analytics function needs to figure out the best network automation function to trigger. The AIMLOrchestration queries the CapabilityLibrary Network Automation Capability Library to match the identified problem to one of the sets of network automation functions that are registered in the library.
- 	The AIMLOrchestration then triggers the identified network automation function to find an appropriate action for the problem. The trigger may be sent via a ProblemResolutionRequest sent by the AIMLOrchestration to the network automation function. The ProblemResolutionRequest may include an identifier for the managed object related to the problem as well as the KPIs. Counters, CM values related to the observed problem.
- 	The selected network automation function submits a proposed recommended action to the AIMLOrchestration for execution. The AIML orchestrator may also undertake coordination action (as described next) to ensure the action is not opposite to the interests of other network automation functions.
- 	At the end of the cycle, the AIMLOrchestration determines the next action, either to recall the previous network automation function to find a new configuration, or to call a different network automation function to attempt the same or related problem or to move to start a new cycle for a completely different problem if the previous problem has been successfully solved.
@startuml Procedure 2. Requesting and Instantiating an MLInferenceEmulationJobs
skinparam Shadowing false
skinparam Monochrome true
!pragma teoz true
'Autonumber

skinparam maxMessageSize 130

participant "Active, unapproved \nNAF e.g., A" as NAFA
participant "Active, approved \n NAF e.g., B" as NAFB
participant "AIML \nOrchestration" as Orch
collections "Peer \n NAFs e.g., C, D,.. " as NAFC

Orch -> Orch: 1. Identify network problem
Orch -> NAFA: 2.
& Orch -> NAFC: 2. Request Capabilities
NAFA -> Orch: 3.
& NAFB -> Orch: 3. providecapabilites.
Orch -> Orch: 4. Select appropriate NAF
Orch -> NAFB: 5. Trigger NAFto find best action.

Note over NAFB, NAFC: 6. May need to coordinate effect of the action

@enduml
[image: Generated by PlantUML]
Figure 5.11.4-1: Identifying and triggering Automation capabilities among multiple network automation functions.

2) 	To Orchestrate the decisions of AI/ML network automation functions, e.g., AI/ML inference functions or ML entities (see Figure 5.11.4-2):
- 	Each network automation function generates a recommendation which it proposes to the AIMLOrchestration for implementation. The AIMLOrchestration takes recommendations for changes from the network automation functions and takes a decision whether to implement the policy changes or not. The policy changes may be stated by the network automation functions as hash functions of parameter to parameter-values annotated with the time within which the values should be activated or else be discarded.
- 	The AIMLOrchestration undertake control tasks for the recommended and approved configuration changes, e.g., concurrency control, to ensure that their action will not conflict with other ongoing or proposed actions. In case of conflicts the AIMLOrchestration may choose to schedule the action to a different time from when it is proposed.
- 	At the right time, the AIMLOrchestration implements the action onto the network and subsequently manages the coordination.
@startuml Procedure 2. Requesting and Instantiating an MLInferenceEmulationJobs
skinparam Shadowing false
skinparam Monochrome true
!pragma teoz true
'Autonumber

skinparam maxMessageSize 130

participant "Active, unapproved \nNAF e.g., A" as NAFA
participant "Active, approved \n NAF e.g., B" as NAFB
participant "AIML \nOrchestrator" as Orch
collections "Peer \n NAFs e.g., C, D,.. " as NAFC

NAFA -> NAFA: 1. Compute configuration, e.g. select action a
& NAFB -> NAFB: 1. Compute configuration, e.g. select action a
NAFA -> Orch: 2.
& NAFB -> Orch: 2. Request action a, PM interval t sec.

Orch -> Orch: 3. Select action to execute
Orch -> NAFA: 4.
& Orch -> NAFB: 4. Notify NAFs of selected action.
Orch -> Orch: 5. Execute selected action

@enduml
[image: Generated by PlantUML]
Figure 5.11.4-2: Orchestrating the decision among multiple network automation functions.

3) 	To share knowledge and coordinate the impacts executed decisions of AI/ML network automation functions, e.g., AI/ML inference functions or ML entities (see Figure 5.11.4-3):
- 	The AIMLOrchestration is a meta-learning agent responsible for learning if any of the availed network automation functions is behaving outside its expected region and for taking the accordingly appropriate counter-measures. So, for the activated configuration changes, the AIMLOrchestration manages the transaction among network automation functions that are intended to coordinate their actions and executions.
- 	Following the execution of changes, the AIMLOrchestration triggers the other network automation functions (besides the one requesting the change) to start a monitoring period to identify any negative effects on their metrics.
- 	At the end of the observation period the network automation functions evaluate the effects of the changes and report to the AIMLOrchestration their network (metric) status observations in form of Action Quality Indicators. The network automation functions consume performance assurance (PM), fault supervision (FM) and provisioning (CM) services on their respective network elements and domains to evaluate the effect of the executed policy changes or configurations.
- 	The network automation functions report the observed effects in terms of the Action Quality Indicators to the AIMLOrchestration for aggregation. Note that, in a distributed implementation of the coordination, the Action Quality Indicators may also be reported directly to the network automation function which generated the action that was executed.
- 	In the subsequent AQI handling, the AIMLOrchestration evaluates the network status inputs from the multiple network automation functions and network domains to learn the effects of the configuration changes, i.e., the AIMLOrchestration determines if the effects are acceptable or not.
- 	Where a given change is determined to be out of the expected range, such a change needs to be labelled accordingly. For example, the change may be barred from ever being re-applied or from being reused in the specific context.
- 	The AIMLOrchestration informs the respective network automation function of the evaluation outcome (e.g., by sending the aggregate AQI). The AIMLOrchestration also accordingly re-configures the network automation functions, when necessary, e.g., by changing the network automation function’s applicable control parameter spaces or its performance targets.
@startuml Procedure 2. Requesting and Instantiating an MLInferenceEmulationJobs
skinparam Shadowing false
skinparam Monochrome true
!pragma teoz true
'Autonumber

skinparam maxMessageSize 130

participant "Active, unapproved \nNAF e.g., A" as NAFA
participant "Active, approved \n NAF e.g., B" as NAFB
participant "AIML \nOrchestrator" as Orch
collections "Peer \n NAFs e.g., C, D,.. " as NAFC

Note over NAFB, Orch: Action from B executed

Orch -> NAFA: 6.
& Orch -> NAFC: 6. Notify execution, trigger PM for interval t sec.
NAFA -> NAFA: 7. Collect PM for t sec
& NAFC -> NAFC: 7. Collect PM for t sec
NAFA -> NAFA: 8. compute & interpret KPIs to compute AQI
& NAFC -> NAFC: 8. compute & interpret KPIs to compute AQI

Alt distributed coordination
 NAFA -> NAFB: 9.
 & NAFC -> NAFB: 9. Report AQI
 NAFB -> NAFB: 10. AQI handling
 NAFB -> NAFB: 10. Revise NAF-B configuration if needed

Else centralized coordination
 NAFA -> Orch: 11.
 & NAFC -> Orch: 11. Report AQI
 Orch -> Orch: 12. AQI handling
 Orch -> NAFB: 13. Report aggregate AQI
 Orch -> Orch: 14. Compute NAF configuration decision
 Orch -> NAFB: 15. Configure NAF(s)

end

@enduml
[image: Generated by PlantUML]
Figure 5.11.4-3: The control and Coordination transaction of network automation functions requests and actions.

Next change
[bookmark: _Toc120096783][bookmark: _Toc120097143][bookmark: _Toc120528590]5.13.4.1	Producer Initiated Retraining
Following is the proposed solution based on information model defined in TS 28.105 [4].
-	Extend the existing MLTrainingRequest IOC with an optional <<datatype>> attribute on monitored data events. The attribute may be called "monitoredDataEvents" and is a list of monitored data events each of which may be of <<datatype>> "monitoredDataEvent" that contains the following information:
-	An attribute called "ThresholdInfoList" as a list of threshold information with each entry a "ThresholdInfo" <<datatype>> datatype as defined in TS 28.622 [13]. The ThresholdInfo is an array containing:
1) the performance metrices to be measured and monitored by the AIML producer,
2) the threshold value,
3) threshold directions indicating the direction for which a threshold crossing triggers a threshold and
4) the threshold hysteresis indicating hysteresis of a threshold, if configured, the PM is not compared only against the threshold value but also considering the hysteresis value.
-	An attribute called "MonitoredkPIList" as a list of KPIs t be monitored for the particular data event. Each entry of the "MonitoredkPIList" is a "kPIName" indicating the name of the KPI as defined in TS 28.554 [14] to be monitored for this ML training.
-	Existing MLEntity <<datatype>> is extended with the same information mentioned above. This is needed to ensure an MnS consumer can configure the ML Eentity and by doing so trigger the ML retraining. ML training producer may monitor the information available at MLEntity <<datatype>> and when any of the thresholds is crossed, retraining may be performed by the ML training producer. The threshold crossing may be identified via direct monitoring of the ML entity by the retraining producer e.g. via data monitoring IOC or via a notification to the retraining producer.
Next change
[bookmark: _Toc120096792][bookmark: _Toc120097152][bookmark: _Toc120528599]5.14.4.1	Support for ML Entity modularity - joint training of ML entities
[bookmark: MCCQCTEMPBM_00000042]The IOC MLTrainingRequest represents the ML model training request that is created by the ML training MnS consumer. In order to support joint training of a group of ML entities this IOC needs to capture the information on the ML entities group and the relation among the ML entities, i.e. MLEntityGroupProfile <<datatype>>. Such data type may contain following attributes:
-	MLEntityGroup ID - Unique identity value identifies the ML entity group instance.
-	JointTrainingIndicator - which indicates if the ML entity group instance needs to be trained (perform joint training of ML entities in the group)
-	Levels - An integer range (1, n) that indicate the ML entity group has n levels, where an integer in the range indicates a specific level, starting from 1. Each level would consist of an ML entity. The output data of one level are used as the input data of the next level.
-	Parallels - a sub integer range (1, m) may be added to indicate the series or the parallel arrangement of ML entities inside a given level, starting from 1. The output data of parallel ML entities inside a given level are used as the input data of the next level.
[bookmark: _Hlk109806615]-	expectedRunTimeContext - This may include information related to specific extraction, transformation, and load of data as input to a specific ML entity inside a given level and parallel.
-	MLEntitiyID inside a given level and parallel.
If multiple ML models need to be trained jointly (in relation which each other) the MnS producer needs to start the training based on the information obtained in the MLEntityGroupProfile. The ML training MnS producer instantiates multiple MLTrainingProcess MOI(s) that are responsible to perform the following:
-	collects data for training, taking into account the inter-relation among ML entities in the MLEntityGroupProfile, e.g., if output of first ML entity is used as input to the second ML entity, the data for training of the second model needs to be collected accordingly,
-	prepares the training data for each ML entity in the group, based on the information in MLEntityGroupProfile. I.e., based on expectedRunTimeContext contained in MLEntityGroupProfile the specific extraction, transformation, and load of data as input to a specific ML entity inside a given level and parallel needs to be performed.
[bookmark: MCCQCTEMPBM_00000050]-	trains the ML entities based on the JointTrainingIndicator.
Next change
[bookmark: _Toc107830576][bookmark: _Toc120096803][bookmark: _Toc120097163][bookmark: _Toc120528610]5.16.1	Description
For AI/ML model training, a large amount of data instances does not necessarily add value, e.g., if only a portion contribute to actual model training, the other portion will be discarded by some well-designed algorithms. During ML model training the information can be provided on whether a specific sample is useful for the training or not and on how much such a sample is useful for the training.
Next change
[bookmark: _Toc120096817][bookmark: _Toc120097176][bookmark: _Toc120528623]5.17.3	Potential requirements
REQ-ML_TRUST_IND-1 The AI/ML MnS producer should have a capability to define trustworthiness indicators for AI/ML data or ML entity and select some indicators based on the use case.
REQ-ML_TRUST_IND-2 The AI/ML MnS producer should have a capability to define a common trustworthiness measure covering main aspects of trustworthiness indicators of AI/ML data or ML entity.
REQ-ML_TRUST_IND-3 The AI/ML MnS producer should have a capability to enable the authorized MnS consumer to request for the desired individual or common trustworthiness measure of AI/ML data or ML entity.
REQ-ML_TRUST_IND-4 The AI/ML MnS producer should have a capability to report to the authorized MnS consumer the achieved individual or common trustworthiness measure of AI/ML data or ML entity.
REQ-ML_DATA_TRUST-1 The producer(s) of ML training, ML testing and AI/ML inference service(s) should support a capability to enable an authorized MnS consumer to request reporting on the supported data trustworthiness related pre-processing capabilities of an ML entity.
REQ-ML_DATA_TRUST-2 The producer(s) of ML training, ML testing and AI/ML inference service(s) should have a capability to pre-process the training data, testing data and inference data of an ML entity to satisfy the desired data trustworthiness measure.
REQ-ML_DATA_TRUST-3 The producer(s) of ML training, ML testing and AI/ML inference service(s) should support a capability to enable an authorized MnS consumer to define the reporting characteristics related to the data trustworthiness reports of an ML entity.
REQ-ML_TRAIN_TRUST-1 The ML training MnS producer should support a capability to enable an authorized MnS consumer to request reporting on the supported training explainability capabilities of an ML entity.
REQ-ML_TRAIN_TRUST-2 The ML training MnS producer should have a capability to train a specific ML entity using training data with explainability characteristics as defined by the MnS consumer.
REQ-ML_TRAIN_TRUST-3 The ML training MnS producer should support a capability to enable an authorized MnS consumer to define the reporting characteristics related to the training explainability reports of an ML entity.
REQ-ML_TRAIN_TRUST-4 The ML training MnS producer should support a capability to enable an authorized MnS consumer to request reporting on the supported training fairness capabilities of an ML entity.
REQ-ML_TRAIN_TRUST-5 The ML training MnS producer should have a capability to train a specific ML entity using training data with fairness characteristics as defined by the MnS consumer.
REQ-ML_TRAIN_TRUST-6 The ML training MnS producer should support a capability to enable an authorized MnS consumer to define the reporting characteristics related to the training fairness reports of an ML entity.
REQ-ML_TRAIN_TRUST-7 The ML training MnS producer should support a capability to enable an authorized MnS consumer to request reporting on the supported training robustness capabilities of an ML entity.
REQ-ML_TRAIN_TRUST-8 The ML training MnS producer should have a capability to train a specific ML entity using training data with robustness characteristics as defined by the MnS consumer.
REQ-ML_TRAIN_TRUST-9 The ML training MnS producer should support a capability to enable an authorized MnS consumer to define the reporting characteristics related to the training robustness reports of an ML entity.
REQ-ML_INF_TRUST-1 The producerprovider of AI/ML inference should have a capability to infer using a specific ML entity rained and tested with explainability characteristics as defined by the MnS consumer.
REQ-ML_INF_TRUST-2 The producerprovider of AI/ML inference should support a capability for an authorized MnS consumer to define the reporting characteristics related to the inference explainability reports of an ML entity.
REQ-ML_INF_TRUST-3 The producerprovider of AI/ML inference should have a capability to infer using a specific ML entity trained and tested with fairness characteristics as defined by the MnS consumer.
REQ-ML_INF_TRUST-4 The producerprovider of AI/ML inference should support a capability for an authorized MnS consumer to define the reporting characteristics related to the inference fairness reports of an ML entity.
REQ-ML_INF_TRUST-5 The producerprovider of AI/ML inference should have a capability to infer using a specific ML entity trained and tested with robustness characteristics as defined by the MnS consumer.
REQ-ML_INF_TRUST-6 The producer provider of AI/ML inference should support a capability for an authorized MnS consumer to define the reporting characteristics related to the inference robustness reports of an ML entity.

End of changes

image1.emf
AI/ML MnS Consumer AI/ML Inference ProducerRequest AI/ML CapabilitiesReport on AI/ML CapabilitiesML entity

Microsoft_Visio_Drawing3.vsdx
AI/ML MnS Consumer

AI/ML Inference Producer
Request AI/ML Capabilities
Report on AI/ML Capabilities

ML entity

image2.png

image3.png

image4.png

